Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203754

RESUMO

Wound healing is a complex process involving a coordinated series of events aimed at restoring tissue integrity and function. Regulatory B cells (Bregs) are a subset of B lymphocytes that play an essential role in fine-tuning immune responses and maintaining immune homeostasis. Recent studies have suggested that Bregs are important players in cutaneous immunity. This review summarizes the current understanding of the role of Bregs in skin immunity in health and pathology, such as diabetes, psoriasis, systemic sclerosis, cutaneous lupus erythematosus, cutaneous hypersensitivity, pemphigus, and dermatomyositis. We discuss the mechanisms by which Bregs maintain tissue homeostasis in the wound microenvironment through the promotion of angiogenesis, suppression of effector cells, and induction of regulatory immune cells. We also mention the potential clinical applications of Bregs in promoting wound healing, such as the use of adoptive Breg transfer.


Assuntos
Linfócitos B Reguladores , Dermatite Atópica , Psoríase , Humanos , Pele , Cicatrização
2.
Front Immunol ; 14: 1178445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731503

RESUMO

Regulatory B lymphocytes (Bregs) are B cells with well-pronounced immunosuppressive properties, allowing them to suppress the activity of effector cells. A broad repertoire of immunosuppressive mechanisms makes Bregs an attractive tool for adoptive cell therapy for diseases associated with excessive activation of immune reactions. Such therapy implies Breg extraction from the patient's peripheral blood, ex vivo activation and expansion, and further infusion into the patient. At the same time, the utility of Bregs for therapeutic approaches is limited by their small numbers and extremely low survival rate, which is typical for all primary B cell cultures. Therefore, extracting CD19+ cells from the patient's peripheral blood and specifically activating them ex vivo to make B cells acquire a suppressive phenotype seems to be far more productive. It will allow a much larger number of B cells to be obtained initially, which may significantly increase the likelihood of successful immunosuppression after adoptive Breg transfer. This comparative study focuses on finding ways to efficiently manipulate B cells in vitro to differentiate them into Bregs. We used CD40L, CpG, IL4, IL21, PMA, and ionomycin in various combinations to generate immunosuppressive phenotype in B cells and performed functional assays to test their regulatory capacity. This work shows that treatment of primary B cells using CD40L + CpG + IL21 mix was most effective in terms of induction of functionally active regulatory B lymphocytes with high immunosuppressive capacity ex vivo.


Assuntos
Linfócitos B Reguladores , Ligante de CD40 , Humanos , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Terapia de Imunossupressão , Fenótipo
3.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762093

RESUMO

Single-nucleotide polymorphism rs71327024 located in the human 3p21.31 locus has been associated with an elevated risk of hospitalization upon SARS-CoV-2 infection. The 3p21.31 locus contains several genes encoding chemokine receptors potentially relevant to severe COVID-19. In particular, CXCR6, which is prominently expressed in T lymphocytes, NK, and NKT cells, has been shown to be involved in the recruitment of immune cells to non-lymphoid organs in chronic inflammatory and respiratory diseases. In COVID-19, CXCR6 expression is reduced in lung resident memory T cells from patients with severe disease as compared to the control cohort with moderate symptoms. We demonstrate here that rs71327024 is located within an active enhancer that augments the activity of the CXCR6 promoter in human CD4+ T lymphocytes. The common rs71327024(G) variant makes a functional binding site for the c-Myb transcription factor, while the risk rs71327024(T) variant disrupts c-Myb binding and reduces the enhancer activity. Concordantly, c-Myb knockdown in PMA-treated Jurkat cells negates rs71327024's allele-specific effect on CXCR6 promoter activity. We conclude that a disrupted c-Myb binding site may decrease CXCR6 expression in T helper cells of individuals carrying the minor rs71327024(T) allele and thus may promote the progression of severe COVID-19 and other inflammatory pathologies.


Assuntos
COVID-19 , Humanos , COVID-19/genética , Hospitalização , Regiões Promotoras Genéticas , Receptores CXCR6/genética , SARS-CoV-2 , Linfócitos T Auxiliares-Indutores
4.
Biochemistry (Mosc) ; 88(1): 13-21, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37068869

RESUMO

B lymphocytes play an important role in the regulation of immune response in both normal and pathological conditions. Traditionally, the main functions of B cells were considered to be antibody production and antigen presentation, but in recent decades there have been discovered several subpopulations of regulatory B lymphocytes (Bregs), which maintain immunological tolerance and prevent overactivation of the immune system. Memory (mBregs, CD19+CD24hiCD27+) and transitional (tBregs, CD19+CD24hiCD38hi) subpopulations of Bregs are usually considered in the context of studying the role of these B cells in various human pathologies. However, the mechanisms by which these Breg subpopulations exert their immunosuppressive activity remain poorly understood. In this work, we used bioinformatic analysis of open-source RNA sequencing data to propose potential mechanisms of B cell-mediated immunosuppression. Analysis of differential gene expression before and after activation of these subpopulations allowed us to identify six candidate molecules that may determine the functionality of mBregs and tBregs. IL4I1-, SIRPA-, and SLAMF7-dependent mechanisms of immunosuppression may be characteristic of both Breg subsets, while NID1-, CST7-, and ADORA2B-dependent mechanisms may be predominantly characteristic of tBregs. In-depth understanding of the molecular mechanisms of anti-inflammatory immune response of B lymphocytes is an important task for both basic science and applied medicine and could facilitate the development of new approaches to the therapy of complex diseases.


Assuntos
Linfócitos B Reguladores , Humanos , Linfócitos B Reguladores/metabolismo , Linfócitos B Reguladores/patologia , Tolerância Imunológica , Imunossupressores/metabolismo , Terapia de Imunossupressão , L-Aminoácido Oxidase/metabolismo
5.
Sci Rep ; 11(1): 14120, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34239022

RESUMO

Transforming growth factor beta (TGF-ß) is the main cytokine responsible for the induction of the epithelial-mesenchymal transition of breast cancer cells, which is a hallmark of tumor transformation to the metastatic phenotype. Recently, research demonstrated that the chemokine CCL2 gene expression level directly correlates with the TGF-ß activity in breast cancer patients. CCL2 attracts tumor-associated macrophages and is, therefore, considered as an important inductor of breast cancer progression; however, the precise mechanisms underlying its regulation by TGF-ß are unknown. Here, we studied the behavior of the CCL2 gene in MDA-MB-231 and HCC1937 breast cancer cells representing mesenchymal-like phenotype activated by TGF-ß. Using bioinformatics, deletion screening and point mutagenesis, we identified binding sites in the CCL2 promoter and candidate transcription factors responsible for its regulation by TGF-ß. Among these factors, only the knock-down of EGR1 and RXRA made CCL2 promoter activity independent of TGF-ß. These factors also demonstrated binding to the CCL2 promoter in a TGF-ß-dependent manner in a chromatin immunoprecipitation assay, and point mutations in the EGR1 and RXRA binding sites totally abolished the effect of TGF-ß. Our results highlight the key role of EGR1 and RXRA transcription factors in the regulation of CCL2 gene in response to TGF-ß pathway.


Assuntos
Quimiocina CCL2/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Receptor X Retinoide alfa/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Biológicos , Mutação Puntual/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
6.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165626, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785408

RESUMO

Toll-like receptor 4 (TLR4) is an innate immunity receptor predominantly expressed on myeloid cells and involved in the development of various diseases, many of them with complex genetics. Here we present data on functionality of single nucleotide polymorphism rs7873784 located in the 3'-untranslated region (3'-UTR) of TLR4 gene and associated with various pathologies involving chronic inflammation. We demonstrate that TLR4 3'-UTR strongly enhanced the activity of TLR4 promoter in U937 human monocytic cell line while minor rs7873784(C) allele created a binding site for transcription factor PU.1 (encoded by SPI1 gene), a known regulator of TLR4 expression. Increased binding of PU.1 further augmented the TLR4 transcription while PU.1 knockdown or complete disruption of the PU.1 binding site abrogated the effect. We hypothesize that additional functional PU.1 site may increase TLR4 expression in individuals carrying minor C variant of rs7873784 and modulate the development of certain pathologies, such as rheumatoid arthritis and type-2 diabetes mellitus.


Assuntos
Artrite Reumatoide/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas/genética , Receptor 4 Toll-Like/genética , Transativadores/genética , Regiões 3' não Traduzidas/genética , Alelos , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Regiões Promotoras Genéticas/genética , Células U937
7.
Sci Immunol ; 4(42)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862865

RESUMO

Redundant mechanisms support immunoglobulin A (IgA) responses to intestinal antigens. These include multiple priming sites [mesenteric lymph nodes (MLNs), Peyer's patches, and isolated lymphoid follicles] and various cytokines that promote class switch to IgA, even in the absence of T cells. Despite these backup mechanisms, vaccination against enteric pathogens such as rotavirus has limited success in some populations. Genetic and environmental signals experienced during early life are known to influence mucosal immunity, yet the mechanisms for how these exposures operate remain unclear. Here, we used rotavirus infection to follow antigen-specific IgA responses through time and in different gut compartments. Using genetic and pharmacological approaches, we tested the role of the lymphotoxin (LT) pathway-known to support IgA responses-at different developmental stages. We found that LT-ß receptor (LTßR) signaling in early life programs intestinal IgA responses in adulthood by affecting antibody class switch recombination to IgA and subsequent generation of IgA antibody-secreting cells within an intact MLN. In addition, early-life LTßR signaling dictates the phenotype and function of MLN stromal cells to support IgA responses in the adult. Collectively, our studies uncover new mechanistic insights into how early-life LTßR signaling affects mucosal immune responses during adulthood.


Assuntos
Imunoglobulina A/imunologia , Linfonodos/imunologia , Receptor beta de Linfotoxina/imunologia , Linfotoxina-alfa/imunologia , Mesentério/imunologia , Células Estromais/imunologia , Animais , Fezes/microbiologia , Feminino , Imunidade nas Mucosas , Linfonodos/citologia , Receptor beta de Linfotoxina/genética , Linfotoxina-alfa/genética , Masculino , Mesentério/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Genes (Basel) ; 10(2)2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678091

RESUMO

Genome-wide association studies (GWASes) revealed several single-nucleotide polymorphisms (SNPs) in the human 17q12-21 locus associated with autoimmune diseases. However, follow-up studies are still needed to identify causative SNPs directly mediating autoimmune risk in the locus. We have chosen six SNPs in high linkage disequilibrium with the GWAS hits that showed the strongest evidence of causality according to association pattern and epigenetic data and assessed their functionality in a local genomic context using luciferase reporter system. We found that rs12946510, rs4795397, rs12709365, and rs8067378 influenced the reporter expression level in leukocytic cell lines. The strongest effect visible in three distinct cell types was observed for rs12946510 that is predicted to alter MEF2A/C and FOXO1 binding sites.


Assuntos
Doenças Autoimunes/genética , Cromossomos Humanos Par 17/genética , Polimorfismo de Nucleotídeo Único , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Células Jurkat , Desequilíbrio de Ligação , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Locos de Características Quantitativas
9.
Int J Mol Sci ; 19(10)2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257479

RESUMO

Cytokine interleukin 33 (IL-33) is constitutively expressed by epithelial barrier cells, and promotes the development of humoral immune responses. Along with other proinflammatory mediators released by the epithelium of airways and lungs, it plays an important role in a number of respiratory pathologies. In particular, IL-33 significantly contributes to pathogenesis of allergy and asthma; genetic variations in the IL33 locus are associated with increased susceptibility to asthma. Large-scale genome-wide association studies have identified minor "G" allele of the single-nucleotide polymorphism rs928413, located in the IL33 promoter area, as a susceptible variant for early childhood and atopic asthma development. Here, we demonstrate that the rs928413(G) allele creates a binding site for the cAMP response element-binding protein 1 (CREB1) transcription factor. In a pulmonary epithelial cell line, activation of CREB1, presumably via the p38 mitogen-activated protein kinases (MAPK) cascade, activates the IL33 promoter containing the rs928413(G) allele specifically and in a CREB1-dependent manner. This mechanism may explain the negative effect of the rs928413 minor "G" allele on asthma development.


Assuntos
Asma/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Interleucina-33/genética , Polimorfismo de Nucleotídeo Único , Alelos , Asma/metabolismo , Linhagem Celular Tumoral , Criança , Células Epiteliais/metabolismo , Predisposição Genética para Doença , Humanos , Pulmão/citologia , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases , Regiões Promotoras Genéticas , Ligação Proteica , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Ativação Transcricional
10.
Biochim Biophys Acta Mol Basis Dis ; 1864(10): 3211-3220, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30006149

RESUMO

CD58 is expressed on the surface of antigen-presenting cells, including B-cells, and provides co-stimulation to regulatory T-cells (Treg) through CD2 receptor binding. Tregs appear to be essential suppressors of tissue-specific autoimmune responses. Thereby, CD58 plays protective role in multiple sclerosis (MS) and CD58 was identified among several loci associated with MS susceptibility. Minor (C) variant of the single-nucleotide polymorphism (SNP) rs1335532 is associated with lower MS risk according to genome-wide association studies (GWAS) and its presence correlates with higher CD58 mRNA levels in MS patients. We found that genomic region containing rs1335532 has enhancer properties and can significantly boost the CD58 promoter activity in lymphoblast cells. Using bioinformatics and pull-down assay we found that the protective (C) rs1335532 allele created functional binding site for ASCL2 transcription factor, a target of the Wnt signaling pathway. Both in B-lymphoblastoid cell lines and in primary B-cells, as well as in a monocytic cell line, activation of Wnt signaling resulted in an increased CD58 promoter activity in the presence of the protective but not the risk allele of rs1335532, whereas ASCL2 knockdown abrogated this effect. In summary, our results suggest that ASCL2 mediates the protective function of rs1335532 minor (C) allele in MS.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Antígenos CD58/genética , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único , Regulação para Cima , Alelos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Antígenos CD58/química , Linhagem Celular Tumoral , Biologia Computacional/métodos , Elementos Facilitadores Genéticos , Feminino , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Humanos , Masculino , Esclerose Múltipla/metabolismo , Regiões Promotoras Genéticas , Via de Sinalização Wnt
11.
Artigo em Inglês | MEDLINE | ID: mdl-29535976

RESUMO

Toll-like receptor 4 (TLR4) initiates immune response against Gram-negative bacteria upon specific recognition of lipid A moiety of lipopolysaccharide (LPS), the major component of their cell wall. Some natural differences between LPS variants in their ability to interact with TLR4 may lead to either insufficient activation that may not prevent bacterial growth, or excessive activation which may lead to septic shock. In this study we evaluated the biological activity of LPS isolated from pathogenic strain of Campylobacter jejuni, the most widespread bacterial cause of foodborne diarrhea in humans. With the help of hydrophobic chromatography and MALDI-TOF mass spectrometry we showed that LPS from a C. jejuni strain O2A consists of both hexaacyl and tetraacyl forms. Since such hypoacylation can result in a reduced immune response in humans, we assessed the activity of LPS from C. jejuni in mouse macrophages by measuring its capacity to activate TLR4-mediated proinflammatory cytokine and chemokine production, as well as NFκB-dependent reporter gene transcription. Our data support the hypothesis that LPS acylation correlates with its bioactivity.


Assuntos
Campylobacter jejuni/imunologia , Campylobacter jejuni/metabolismo , Doenças Transmitidas por Alimentos/microbiologia , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/imunologia , Animais , Campylobacter jejuni/patogenicidade , Citocinas/metabolismo , Fator Regulador 3 de Interferon/genética , Interleucina-1beta/metabolismo , Interleucina-6 , Lipídeo A/imunologia , Lipídeo A/isolamento & purificação , Lipídeo A/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
Biochim Biophys Acta Gene Regul Mech ; 1860(12): 1169-1178, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29107083

RESUMO

Many types of chemotherapeutic agents induce of DNA-damage that is accompanied by activation of p53 tumor suppressor, a key regulator of tumor development and progression. In our previous study we demonstrated that p53 could repress CXCR5 chemokine receptor gene in MCF-7 breast cancer cells via attenuation of NFkB activity. In this work we aimed to determine individual roles of p53 family members in the regulation of CXCR5 gene expression under genotoxic stress. DNA-alkylating agent methyl methanesulfonate caused a reduction in CXCR5 expression not only in parental MCF-7 cells but also in MCF-7-p53off cells with CRISPR/Cas9-mediated inactivation of the p53 gene. Since p53 knockout was associated with elevated expression of its p63 and p73 homologues, we knocked out p63 using CRISPR/Cas9 system and knocked down p73 using specific siRNA. The CXCR5 promoter activity, CXCR5 expression and CXCL13-directed migration in MCF-7 cells with inactivation of all three p53 family genes were completely insensitive to genotoxic stress, while pairwise p53+p63 or p53+p73 inactivation resulted in partial effects. Using deletion analysis and site-directed mutagenesis, we demonstrated that effects of NFkB on the CXCR5 promoter inversely correlated with p63 and p73 levels. Thus, all three p53 family members mediate the effects of genotoxic stress on the CXCR5 promoter using the same mechanism associated with attenuation of NFkB activity. Understanding of this mechanism could facilitate prognosis of tumor responses to chemotherapy.


Assuntos
Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/fisiologia , Receptores CXCR5/genética , Proteína Tumoral p73/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Sistemas CRISPR-Cas , Feminino , Humanos , Células MCF-7 , Metanossulfonato de Metila/farmacologia , NF-kappa B/fisiologia , Regiões Promotoras Genéticas
13.
Cytokine ; 89: 127-135, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26854213

RESUMO

The link between inflammation and cancer was first proposed by R. Virchow. It was later realized that it is chronic inflammation that may promote cancer, whereas acute inflammation can actually block tumor development or even result in cure. Many molecular mediators of these diverse processes have been characterized only during the past 3 decades thanks to the advances in molecular and cellular techniques, as well as due to technologies of reverse genetics. In this chapter we discuss the role of Toll-like receptor (TLR) 4 signaling in cancer and contributions of proinflammatory cytokine signaling (whose expression may be driven by TLR-mediated signals) to tumor-promoting microenvironment. We also discuss recent clinical advances to target these pro-tumorigenic pathways at distinct stages of tumorigenesis.


Assuntos
Transformação Celular Neoplásica/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Microambiente Tumoral/imunologia , Animais , Transformação Celular Neoplásica/patologia , Citocinas/imunologia , Humanos , Neoplasias/patologia
14.
Biochim Biophys Acta ; 1859(10): 1259-68, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27424222

RESUMO

Signaling lymphocytic activation molecule family member 1 (SLAMF1)/CD150 is a co-stimulatory receptor expressed on a variety of hematopoietic cells, in particular on mature lymphocytes activated by specific antigen, costimulation and cytokines. Changes in CD150 expression level have been reported in association with autoimmunity and with B-cell chronic lymphocytic leukemia. We characterized the core promoter for SLAMF1 gene in human B-cell lines and explored binding sites for a number of transcription factors involved in B cell differentiation and activation. Mutations of SP1, STAT6, IRF4, NF-kB, ELF1, TCF3, and SPI1/PU.1 sites resulted in significantly decreased promoter activity of varying magnitude, depending on the cell line tested. The most profound effect on the promoter strength was observed upon mutation of the binding site for Early B-cell factor 1 (EBF1). This mutation produced a 10-20 fold drop in promoter activity and pinpointed EBF1 as the master regulator of human SLAMF1 gene in B cells. We also identified three potent transcriptional enhancers in human SLAMF1 locus, each containing functional EBF1 binding sites. Thus, EBF1 interacts with specific binding sites located both in the promoter and in the enhancer regions of the SLAMF1 gene and is critical for its expression in human B cells.


Assuntos
Regulação da Expressão Gênica , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Transativadores/genética , Transcrição Gênica , Linfócitos B/citologia , Linfócitos B/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos , Genes Reporter , Células HEK293 , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Luciferases/genética , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Cultura Primária de Células , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Front Immunol ; 6: 595, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635809

RESUMO

Toll-like receptor 4 (TLR4) is required for activation of innate immunity upon recognition of lipopolysaccharide (LPS) of Gram-negative bacteria. The ability of TLR4 to respond to a particular LPS species is important since insufficient activation may not prevent bacterial growth while excessive immune reaction may lead to immunopathology associated with sepsis. Here, we investigated the biological activity of LPS from Burkholderia mallei that causes glanders, and from the two well-known opportunistic pathogens Acinetobacter baumannii and Pseudomonas aeruginosa (causative agents of nosocomial infections). For each bacterial strain, R-form LPS preparations were purified by hydrophobic chromatography and the chemical structure of lipid A, an LPS structural component, was elucidated by HR-MALDI-TOF mass spectrometry. The biological activity of LPS samples was evaluated by their ability to induce production of proinflammatory cytokines, such as IL-6 and TNF, by bone marrow-derived macrophages. Our results demonstrate direct correlation between the biological activity of LPS from these pathogenic bacteria and the extent of their lipid A acylation.

16.
PLoS One ; 9(5): e98349, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24865838

RESUMO

Clusterin is a multifunctional protein that participates in tissue remodeling, apoptosis, lipid transport, complement-mediated cell lysis and serves as an extracellular chaperone. The role of clusterin in cancer and neurodegeneration has been extensively studied, however little is known about its functions in the immune system. Using expression profiling we found that clusterin mRNA is considerably down-regulated in mouse spleen stroma upon knock-out of lymphotoxin ß receptor which plays pivotal role in secondary lymphoid organ development, maintenance and function. Using immunohistochemistry and western blot we studied clusterin protein level and distribution in mouse spleen and mesenteric lymph nodes in steady state and upon immunization with sheep red blood cells. We showed that clusterin protein, represented mainly by the secreted heterodimeric form, is present in all stromal compartments of secondary lymphoid organs except for marginal reticular cells. Clusterin protein level rose after immunization and accumulated in light zones of germinal centers in spleen--the effect that was not observed in lymph nodes. Regulation of clusterin expression by the lymphotoxin beta signaling pathway and its protein dynamics during immune response suggest a specific role of this enigmatic protein in the immune system that needs further study.


Assuntos
Clusterina/genética , Clusterina/metabolismo , Centro Germinativo/imunologia , Receptor beta de Linfotoxina/genética , Baço/imunologia , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Centro Germinativo/metabolismo , Imunização Passiva , Receptor beta de Linfotoxina/metabolismo , Camundongos , Transdução de Sinais , Baço/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...